Deep Learning là gì? Deep Learning là một tập hợp con của Machine Learning, bản thân nó nằm trong lĩnh vực trí tuệ nhân tạo. Qua bài viết dưới đây sẽ cung cấp thêm nhiều thông tin hơn đến bạn đọc, cùng tham khảo nhé.
Mục Lục
Deep Learning là gì?

Deep Learning là tập hợp con của Machine Learning và nó có tác dụng hỗ trợ cho máy tính tự huấn luyện chính nó để có thể thực hiện mọi tác vụ tương tự như con người. Điều này chính là giúp máy tính bắt chước con người cách học hỏi và suy nghĩ.
Các hệ thống của Deep Learning có khả năng cải thiện được những hiệu suất của chúng với quyền truy cập vào dữ liệu sẽ được nhiều hơn.
Thông thường, phiên bản máy sẽ có nhiều kinh nghiệm hơn; những máy móc đã có đủ kinh nghiệm thì sẽ được mang đi phục vụ cho những công việc như: lái xe, phát hiện cỏ dại,…
Đánh giá ưu và nhược điểm của Deep Learning
Ưu điểm
- Các thuật toán được sử dụng trong Deep Learning được tối ưu tốt hơn nhờ sự bùng nổ của Internet và khả năng phát triển mạnh mẽ từ khả năng tính toán của các thiết bị máy tính.
- Deep Learning có độ chính xác cao, đảm bảo cho các thiết bị điện tử tiêu dùng có thể đáp ứng được mọi nhu cầu cũng như mong đợi của người dùng.
- Cung cấp hệ thống gợi ý trên các nền tảng lớn như: Facebook, Amazon, Netflix,… cực kỳ mạnh mẽ, giúp tăng đáng kể độ tương tác của người dùng.
- Khả năng nhận diện hình ảnh tốt, không chỉ xác định được đối tượng trong ảnh mà còn hiểu được nội dung và ngữ cảnh trong đó.
- Deep Learning rất ưu tiên và chú trọng về độ an toàn đối với những mô hình xe “tự điều khiển”.
- Những dữ liệu của Deep Learning được dán nhãn bởi: sự phát triển của xe “tự điều khiển” đòi hỏi hàng triệu hình ảnh cũng như hàng ngàn giờ để xem video.
Nhược điểm
- Deep Learning luôn đòi hỏi một nguồn khủng các dữ liệu đầu vào để máy tính học hỏi. Quy trình này mất nhiều thời gian và sức mạnh xử lý mà chỉ có các Server chuyên nghiệp mới có thể làm được. Trường hợp không đủ dữ liệu đầu vào để xử lý, mọi thứ sẽ không thể diễn ra đúng như dự định của máy tính đưa ra.
- Deep Learning chưa thể nhận biết được những thứ phức tạp. Bởi, kỹ thuật của Deep Learning hiện chưa đảm bảo tốt để trí tuệ nhân tạo có thể rút ra những kết luận một cách logic.
Cách thức hoạt động của Deep Learning

Cách thức hoạt động của thuật toán Deep Learning diễn ra như sau: Các dòng thông tin sẽ được trải qua nhiều lớp cho đến lớp sau cùng. Lấy quy trình học của con người làm ví dụ cụ thể. Qua các lớp đầu tiên sẽ tập trung vào việc học các khái niệm cụ thể hơn trong khi các lớp sâu hơn sẽ sử dụng thông tin đã học để nghiên cứu và phân tích sâu hơn trong các khái niệm trừu tượng . Quy trình xây dựng biểu diễn dữ liệu này được gọi là trích xuất tính năng.
Kiến trúc phức tạp của việc học sâu được cung cấp từ mạng lưới thần kinh sâu với khả năng thực hiện trích xuất tính năng tự động. Ngược lại, trong học máy thông thường còn gọi là học nông, nhiệm vụ này được thực hiện khi truy xuất các thuật toán cụ thể.
Ứng dụng của Deep learning trong đời sống hiện nay
Việc Deep Learning phát triển tạo nên sự chủ động trong mọi việc, con người dần có thể điều khiển cuộc sống của mình. Cùng điểm qua các hình thức mà việc học sâu mang lại.
Ứng dụng xe tự động
Phòng thí nghiệm nghiên cứu về trí tuệ nhân tạo UBER tại Pittsburg đã tích hợp thêm các tính năng cho chiếc xe thông thường bằng việc tuỳ chọn giao thức ăn cùng với trải nghiệm xe tự động lái.
Vấn đề trong việc phát triển hình thức xe hơi tự chủ chính là các nhà phân tích phải xây dựng nên các kịch bản có thể xảy ra trong cuộc sống và lập trình việc xử lý các tình huống tích hợp trong chiếc xe hơi.
Deep Learning là gì? Bên cạnh đó chu kỳ kiểm tra và triển khai thường xuyên các thuật toán học sâu để đảm bảo sự an toàn xảy ra với nhiều tình huống và hàng ngàn kịch bản khác nhau trong đời sống. Đó chính là thông qua các dữ liệu từ máy ảnh, từ bản đồ địa lý, các yếu tố môi trường bên ngoài từ đó tích hợp các cảm biến giúp cho thiết bị có thể xác định được các phương hướng, các biển báo, các tuyến đường phù hợp.
Xem thêm Đánh tan cơn giận làm chủ bản thân
Trợ lý ảo
Ứng dụng phổ biến nhất của Deep Learning ngày nay là trợ lý ảo từ Alexa đến Siri, Google Assistant. Mỗi tương tác với các trợ lý này cung cấp cho họ cơ hội tìm hiểu thêm về giọng nói và ngữ điệu của bạn, từ đó cung cấp cho bạn trải nghiệm tương tác như phiên bản thứ 2 của con người.
Trợ lý ảo sử dụng học tập sâu để biết thêm về các chủ đề của họ, từ sở thích ăn tối của bạn đến các điểm truy cập nhiều nhất hoặc các bài hát yêu thích của bạn. Họ học cách hiểu các mệnh lệnh của bạn bằng cách đánh giá ngôn ngữ tự nhiên của con người để thực hiện chúng.
Ngoài ra các ứng dụng này có khả năng đặc biệt khác là dịch bài phát biểu của bạn thành văn bản, ghi chú cho bạn và đặt lịch hẹn. Có thể nói đây chính là một trợ lý ảo thực sự của bạn, từ việc nhắc nhở cho đến tự động trả lời các cuộc gọi cụ thể của bạn để phối hợp các nhiệm vụ giữa bạn và các thành viên trong nhóm. Với các ứng dụng học sâu như tạo văn bản và tóm tắt tài liệu, trợ lý ảo có thể hỗ trợ bạn trong việc tạo hoặc gửi bản sao email phù hợp.
Mô phỏng và nhận diện hình ảnh
Chắc hẳn, chúng ta đều đã từng thấy máy tính tự động nhận diện và phân loại các hình ảnh của bạn. Ví dụ: Facebook có thể tự động gắn thẻ chính bạn và bạn bè của bạn. Tương tự, Google Photos có thể tự động gắn nhãn ảnh của bạn để tìm kiếm dễ dàng hơn.
Và với Deep Learning bạn có thể dễ dàng tìm và phân loại các hình ảnh theo ngày, sự kiện mà không phải dùng thao tác thủ công mất thời gian.
Xem thêm Top 10 kỹ năng mềm của sinh viên được doanh nghiệp đánh giá cao
Tính năng dịch tự động
Deep Learning là gì? Ứng dụng Google Translate giờ đây có thể tự động dịch hình ảnh với văn bản theo thời gian thực sang ngôn ngữ bạn chọn. Chỉ cần giữ máy ảnh trên đầu của đối tượng và điện thoại của bạn chạy một mạng học sâu để đọc hình ảnh, OCR nó (tức là chuyển đổi nó thành văn bản) và sau đó dịch nó. Ngôn ngữ sẽ dần dần trở thành không có rào cản và chúng ta sẽ có thể giao tiếp với những người khác trên toàn cầu.
Hi vọng bài viết trên, Long Vân đã cung cấp cho bạn hiểu hơn về Deep Learning và tầm quan trọng của nó ảnh hưởng như thế nào trong đời sống.
Qua bài viết trên Ghichu.vn đã cung cấp các thông tin về Deep Learning là gì? Đánh giá ưu và nhược điểm của Deep Learning. Hy vọng những thông tin trên của bài viết sẽ hữu ích vơi các bạn đọc. Cảm ơn các bạn đã dành thời gian để xem qua bài viết này nhé.
Lộc Đạt – Tổng hợp
Tham khảo ( nordiccoder.com, wiki.tino.org, … )
Discussion about this post